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MATHEMATICAL ANALYSIS OF THE INTENSITY DISTRIBUTION OF 

OPTICAL IMAGES FOR VARIOUS DEGREES OF COHERENCE OF ILLUMINATION 

(Representation of I n t e n s i t y  by Hermitian Matrices) 

Hideya Gam0 (1) 

ABSTRACT. Since o p t i c a l  systems have d i s t i n c t i v e  
f ea tu res  as compared t o  electrical communication systems , 
some formulation should b e  prepared f o r  t h e  o p t i c a l  image 
i n  order  t o  use i t  i n  information theory of o p t i c a l  
systems. 
i n t e n s i t y  d i s t r i b u t i o n  of t h e  image by an o p t i c a l  system 
having a given aperture  constant a i n  t he  absence of 
both aberrat ion and focusing defec ts  is  oLtained by 
considering the  na ture  of i l luminat ion,  namely, coherence, 
p a r t i a l  coherence and incoherence; 

I n  t h i s  paper t h e  following formula f o r  t h e  

where I (y )  is  t h e  i n t e n s i t y  of t h e  image at  a coordinate 
poin t  y, r12 t h e  phase coherence f a c t o r  introduced by 

H. H. Hopkins etc. ,  E(x) t h e  complex transmission 
coe f f i c i en t  of t h e  objec t  and A(x) t h e  complex amplitude 
of t h e  incident  waves a t  t h e  objec t ,  and t h e  integra- 
t i o n  is  taken over t h e  object  plane. 

The above expression has some i n t e r e s t i n g  fea tures ;  
namely, t he  " in tens i ty  matrix" composed of -the element 
a mentioned above is a pos i t ive-def in i te  Hermitian 

matrix,  and the  diagonal elements are given by the  
i n t e n s i t i e s  sampled a t  every poin t  of t h e  image plane 
separated by the  d is tance  A/2ct, and t h e  trace of t he  
matrix o r  t he  sum of diagonal elements is  equal  t o  the  
t o t a l  i n t e n s i t y  in t eg ra t ed  over t h e  image plane. 

nm 
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an Hermitian matrix can be  reduced t o  diagonal form by 
a uni ta ry  transformation, t h e  i n t e n s i t y  d i s t r i b u t i o n  of 
t h e  image can be  expressed as 

-- --____-_I_ 
I(Y) '11 E&ri I *+ 1 2  ICSi2Ui I'+**...* +A. IxSi.~,l'+....- 

are non-negative eigenvalues where Al , A2 , . e .  , X 
of t h e  i n t e n s i t y  matrix. I n  case of coherent illumina- 
t i on ,  only t h e  f i r s t  term of t h e  above equation remains 
and a l l  t h e  o ther  terms are zero,  because the  rank of 
t h e  coherent i n t e n s i t y  m a t r i x  is one, and i t s  only non- 
vanishing eigenvalue is equal t o  t h e  t o t a l  i n t e n s i t y  
of t h e  image. On the o the r  hand, t h e  rank of t h e  inco- 
herent  i n t e n s i t y  matrix is l a r g e r  than t h e  rank of any 
o ther  coherent o r  p a r t i a l l y  coherent cases. The term 
of t h e  l a r g e s t  eigenvalue i n  t h e  above formulation may 
b e  espec ia l ly  important , because i t  w i l l  correspond 
t o  the  coherent pa r t  of t h e  image i n  case of p a r t i a l l y  
coherent i l lumination. 

n' '" 

From t h e  i n t e n s i t y  matrix of t h e  image obtained by 
uniform i l luminat ion of t h e  ob jec t  h a v L g  uniform trans- 

namely 
. mission coef f ic ien t  , w e  may der ive  an i n t e r e s t i n g  quant i ty ,  

dQ - X ( W I d  log (&/I.) 

where An i s  t h e  nth eigenvalue of t h e  i n t e n s i t y  matrix 

and I is  the  trace of t he  matrix. d is zero f o r  the  

coherent i l luminat ion and becomes logN f o r  t he  incoherent 
i l luminat ion,  where N is the  "degree of freedom" of t h e  
image of t he  area S, namely, N = 4a2S/A2. The value of 
d f o r  p a r t i a l l y  w e r e n t  i l luminat ion is a p o s i t i v e  
quant i ty  smalle5 than log  N. 

may be regarded as a measure of t h e  "degree of coherence" 
of t h e  i l luminat ion,  where do = log  N and 6 is  uni ty  for 
t h e  coherent case and zero f o r  pe r fec t ly  incoherent 
case. 

0 

A quant i ty  6 = (do-d)/do 

The sampling theorem f o r  t h e  in ' tensi ty  d i s t r i b u t i o n  
is derived, and t h e  r e l a t i o n  between elements of i n t e n s i t y  

by the  dis tance h / 4 a  is  given. 
'ma t r ix  and i n t e n s i t i e s  sampled a t  every poin t  separated 

' / 4 3 2  
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* 1. INTRODUCTION 

The re la t ionship  between t h e  image and t h e  ob jec t  i n  opt ics  i n  terms 
of information theory is a recent  topic.  

such as treatment by response functions,  w e  are st i l l  on the threshold of 

dealing with such t r a d i t i o n a l  problems i n  information theory as entropy o r  

noise.  While we have r a t h e r  advanced knowledge of  electric communications, 

much of i t  cannot be r e a a i l y  .applied t o  opt ics .  There is  a need t o  consider 

s p e c i f i c  o p t i c a l  cha rac t e r i s t i c s  and make new formulations. 

Even wi th  an es tab l i shed  foundation, 

/--- 

From t h i s  po in t  of view, opt ics  is regarded as having t h e  following 

cha rac t e r i s t i c s :  (i) t h e  d i r e c t l y  observable-quant i ty  is not  wave amplitude, 

but the  square of i t s  absolute  value,  i n t ens i ty .  In t ens i ty  is never negative.  

( i i )  
a space f i l t e r  are both independent physical  quan t i t i e s .  

temporal var ia t ions  occur and the re  are r e s t r i c t i o n s  due t o  cause and e f f e c t .  

The amplitude and phase of t h e  response functq.on i n  opt ics  regarded as 

I n  e lectr ical  c i r c u i t s ,  

( i i i )  The information quant i ty ,  including t h e  image, varies with t h e  i l lum- 

ina t ion .  For example, w i t h  coherent i l luminat ion w e  can extract information 

on wave amplitude and phase,while with incoherent i l lumina t ion ,  w e  cannot 

ex t r ac t  phase information. ( iv )  I n  determining t h e  capacity of op t i c s  as a 

path of communications, no i se  is a bas i c  physical  quant i ty  

effects of s t r a y  l i g h t ,  "seeing" through i r r e g u l a r  va r i a t ions  i n  t h e  medium, 

granular i ty  of t h e  f i l m ,  t h e  physiological  process of s i g h t ,  etc. I n  a l l  of 

these processes,  although w e  e i t h e r  add a new i n t e n s i t y  t o  an ex i s t ing  one o r  

subt rac t  from i t ,  the  ove ra l l  i n t e n s i t y  can never become "negative". 

It i s  a multidimensional, e spec ia l ly  a two-dimensional, space f i l t e r .  

including t h e  

(v) 

,These f a c t s  are important s t a r t i n g  poin ts  i n  bui ld ing  an information 

theory f o r  op t i c s  and a discussion which ignores them may serve as a guide 

l ine ,but  i t  can never b e  conclusive. 

The author considered the f i r s t  and second characteristics given above 

f o r  a one-dimensional, aber ra t ion less  system and s tudied  the  changes i n  t h e  

3 



. . . . . . . . - ,  

informational p rope r t i e s  of t h e  image depending on the t h i r d  problem, t h e  

degree of coherence, through t h e  use .of t h e  sampling theorem known i n  communi- 

cat ions theory. The i n t e n s i t y  d i s t r i b u t i o n  of  t h e  image i s  described i n  terms 

of an i n t e n s i t y  matrix, a pos i t i ve  Hermitian matrix, from which w e r e  derived 

various phys ica l  concepts. H. H. Hopkins' "phase coherence factor"  is a l s o  

used. 

2. THE SAMPLING THEOREM 

As a b a s i s  f o r  later treatment,  l e t  us give a simple explanation of t h e  

sampling theorem, F i r s t ,  le t  us consider t he  o p t i c a l  system formed of t h e  

l i g h t  source,  object ,  l ens  and image. The wave from t h e  source with u n i t  

i n t e n s i t y  a t  poin t  P above t h e  source and inc ident  a t  poin t  Q on t h e  object-plane 

i s  designated by A(x-2). 

t h e  amplitude of t h e  wave a f t e r  transmission is E(x)A(x-2). I f  w e  denote one 

ha l f  of t h e  aperture  angle of t h e  l i g h t  bundle as 8 ,  and the  wavelength by A ,  

I f  t h e  complex t r ansmi t t i v i ty  of t h e  objec t  i s  E(x), 

/ 4 3 3  

- - then 2 s i n  p/X will correspond exact ly  

I I t o  t h e  band width of t he  f i l t e r  i n  an 
&re 

1 
- 1  

e l e c t r i c  communications system. I f  

we f ind  t h e  Fourier transformation value 

f(X) of t h e  complex amplitude of t h e  

above wave, w e  have: 

F ( y ) :  complex amplitude of image i 
A(%-2): complex amplitude of the incident 

wave from a point.source at P 
E(x)  : complex transmission coefficient 

1 
.I 
1 - -  - 

Figure 1 Here, s i n c e  X = s i n  0 / h ,  corresponding 

t o  t h e  d i r ec t ion  cosine showing the 
d i r ec t ion  of progress of t h e  plane wave, f (X) - i s  none o the r  than t h e  amplitude 

of t h e  plane wave progressing i n  t h e  d i r ec t ion  of s i n  

which contr ibutes  t o  t h e  image depending on t h e  s i z e  of t h e  aperture  i n  t h e  

o p t i c a l  system, is r e s t r i c t e d  t o  a c e r t a i n  zone width. 

ab ove , 

8 = AX. However, f (X) 

O r ,  from 2 s i n  8/A 
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Here, a = sin 8.  

use a Fourier  series expression: 

Thus, s ince  the domain of f(X) is confined t o  h / X ,  we can 

As t o  F(y), the amplitude d i s t r i b u t i o n  i n  t h e  image plane,  one needs t o  f i n d  

t h e  f (X) Fourier  inverse  series with domain 2a/X, and using Equation '(3) : 

_- . .- 

+r *in .?ZQ (y- E ) 
-E adz)  A -- n- -.. 

.: . .  ( y - 2 - j  ( 4 ' )  

However, as seen from Equation ( 4 )  , t he  coe f f i c i en t  an(z) is none o the r  than 

the  image amplitude F(nXI2a) i n  nX/2a mul t ip l ied  by X/2a. Thus, 

The complex amplitude of the image obtained through an o p t i c a l  system wi th  a 

zone width 2a/X determined by the  aper ture  i s  readily. determined from t h e  

complex amplitudes at  poin ts  X/2a apart .  

(um-sin ( 7 - n W a ) / - - A  (y-n/2U)) is a completely orthogonal system. O r ,  f o r  any 

a r b i t r a r y  pos i t i ve  o r  negative in t ege r s  n ,  m, 

Thus t h e  system of equations 

2 KQ 2nu- 
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The results are exac t ly  t h e  same as the  sampling theorem f o r  electrical s i g n a l  

waves with l imi ted  frequency ranges, d i f f e r i n g  only at poin ts  where t h e  

amplitudes being sampled are complex numbers. Such an appearance of complex 

amplitudes i n  the  o p t i c a l  system is  re l a t ed  t o  t h e  second c h a r a c t e r i s t i c  

c i t e d  i n  § 1. The r e s u l t s  f o r  the one-dimensional, aber ra t ion less  system 

thus obtained can e a s i l y  be  expanded t o  cover a two-dimensional, aber ra t ion less  

system and i f  we use 

as t h e  s tandard function, then t h e  complex amplitude l imi ted  t o  any given 

range can b e  shown i n  terms of an expanded series. 

case of a round aperture  is  painstaking bu t  i t  can b e  accomplished by sampling 

of t h e  poin ts  on t h e  l a t t i ce  described above. For example, i f  w e  take t h e  

l a t t i c e  poin ts  determined by ,a rectangular  aper ture  circumscribing the  given 

circle, t h e  amplitude d i s t r i b u t i o n  i s  determined by a l l  the  sampling values 

but  the values of each sampling can never be  independent.. 

Rigorous treatment i n  t h e  

The discussion given above covers t h e  case of  i l luminat ion by a poin t  

source and holds t r u e  only f o r  such coherent i l luminat ion.  And even i n  t h e  

case of coherent i l luminat ion,  i t  has a clear phys ica l  meaning only i n  t h e  

case of independent der ivat ion of amplitude and phase by a s u i t a b l e  phase 

d i f f e r e n t i a l  method. This is due t o  t h e  f a c t  t h a t  only i n t e n s i t y  can b e  

observed d i r e c t l y ,  i n  accordance with t h e  f i r s t  property i n  § 1. Below we  

s h a l l  discuss  a method of f inding physical  p roper t ies  from the  i n t e n s i t y  

d i s t r i b u t i o n  of t h e  image i n  cases where t h e  i l luminat ion i s  e i t h e r  p a r t i a l l y  

coherent o r  t o t a l l y  incoherent. 

C2)See Appendix 3. 
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3. INTENSITY MATRIX AND PHASE COHERENCE FACTOR 

The i n t e n s i t y  d i s t r i b u t i o n  i n  t h e  case of  coherent i l lumina t ion  is 

derived by Equation ( 5 )  i n  § 2. 

t h e  image plane R (coordinate y)  by I(y)  , then 

I f  w e  denote t h e  i n t e n s i t y  a t  a poin t  on 

Here, 

I n  t h e  following, t he  i n t e n s i t y  d i s t r i b u t i o n  of t h e  image i s  considered f o r  

t he  general  case where t h e  source is of f i n i t e  s ize-and  br ightness  at  each 

poin t  may take any a r b i t r a r y  value. I f  w e  designate t h e  br ightness  at  a po in t  

P on t h e  source (coordinate z) by J ( z ) ,  t h e  i n t e n s i t y  a t  a point  R (coordinate 

y)  on t h e  image plane is given by: 

__. _-. 

. . .  (7 ' )  

For, s ince  the l i g h t  rays from each point  of t h e  source are mutually inco- 

herent ,  t h e  sum of t h e  i n t e n s i t i e s  at  each poin t  source is t h e  i n t e n s i t y  of 

t h e  whole. This f a c t  can b e  understood from a s ta t is t ical  poin t  of v i e w  i n  

the  following manner. Since i n t e n s i t y  is  the  squared- t i m e  average value of 

t h e  l i g h t  wave, there  is no cor re la t ion  between the  l i g h t  waves from the  

l i g h t  rays a t  each p o i n b a f i 5 t h e  squared average values f o r  t h e  overlapping 

waves are each equal t o  t h e  sum of the squared average values. 
/ 

The r e s u l t s  f o r  Formula (7) above c o n s t i t u t e  t he  major por t ion  of t h i s  

paper. 

coef f ic ien t  a And, s ince  i n t e n s i t y  cannot be negat ive,  t h i s  is a pos i t i ve  

Formula (7) is a quadra t ic  equation wi th  var iab les  un and um and 

nm 

I434  
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quadra t ic  equation. 

t o  here  as the i n t e n s i t y  matrix(3). Given t h i s  matrix, s ince  t h e  i n t e n s i t y  

d i s t r i b u t i o n  f o r  t h e  image>-defined, w e  can say t h a t  t h e  i n t e n s i t y  matrix 

includes a l l  information on t h e  i n t e n s i t y  d i s t r i b u t i o n  of t h e  image. 

w e  consider the  physical  p roper t ies  of these  i n t e n s i t y  matrices e 

The matrix formed by the coe f f i c i en t  am is re fe r r ed  

/ Below, 

L e t  us consider t h e  expression of  the i n t e n s i t y  matrix element anm i n  

terms of H. H. Hopkins' phase coherence factor.. The la t te r  has been thoroughly 

s tudied  already and is of considerable convenience i n  treatment. 

us transform a as defined by (7) as follows: 

F i r s t ,  let  

nm 

Here, u(x - nX/2a), u(x2 - mx/2a) i s  t h e  amplitude of the image produced at 

poin t  R, x = nX/2a, mX/2a of t h e  image plane when a wave with u n i t  amplitude 
1 .  

Q, i n  t h e  objec t  plane passes through-an o p t i c a l  system of zone- 1' at poin ts  Q 

width 2a/A(a: numerical aper ture ,  A :  wavelength). I n  the aber ra t ion less  

system considered here,  

(For proof,  see appendix 1). 

I n  t h e  form of (8), the re l a t ionsh ip  wi th  t h e  phase coherence f a c t o r  

I f  we  take t h e  i n t e g r a l  I(xl,x2) f o r  t he  l i g h t  source [2] becomes clear. 

pos i t i on  Z included i n  Equation ( 8 ) ,  

(3)The i n t e n s i t y  matrix has  fea tures  i n  common with t h e  information matrix 
proposed by D. M. MacKay [7] wi th  no s p e c i f i c  object .  
coherence matrix, t r e a t i n g  the  lightwave as a t i m e  series [8], b u t  i t  has not  
been applied i n  o p t i c a l  systems. 

N. Wiener proposed a 
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This quant i ty  is  a kind of co r re l a t ive  funct ion f o r  the complex amplitude a t  

ind ica t e  t h e  amplitude at each point  due t o  source "1 sX2 i r  2 
Z ,  then i t  can be  expressed as: 

and i f  w e  l e t  U U 

I f  I ,I are the  i n t e n s f t i e s  a t  poin ts  xZ9 x2, 1 . 2  

.- - 

Here r(x1 - x ) is  t h e  phase coherence f a c t o r ,  which, by d e f i n i t i o n ,  is: 2 

2 Since 11, I are none o ther  than IA(xl) I , [A(x2) 12, t he  squares of t h e  abso- 2 
l u t e  values of t h e  complex amplitude of t h e  inc ident  waves a t  poin ts  x19 x2 
of t h e  objec t  plane due t o  l i g h t  source 

- _  -. 

~ " ~ = ~ ~ ( r , - g : ) ~ ( r I ) ~ ( s * )  I A ( ~ ~ )  11 AW I ;  

Here, E(x) is t h e  complex t ransmiss iv i ty ,  A(x) is t h e  complex amplitude of t h e  

inc ident  wave, u(s,--g-) is  the amplitude of t h e  wave produced a t  poin t  nX/2a 

of t h e  image plane by the wave with u n i t  amplitude a t  point  x1 of t h e  objec t  

plane (Equation'8 ') ,  and r(xl - x2) i s  t h e  phase coherence factor,' Accord- i 

ing t o  Hopkins, r is  given by 

J(x,y) is  t h e  br ightness  a t  poin ts  (x,y) on t h e  l i g h t  source. We know t h a t  

i l luminat ion using a condenser l ens  can a l s o  be expressed by an equation l i k e  

t h a t  given by a s u i t a b l e  equivalent  l i g h t  source. 

9 
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Equation (11) above is  t h e  f i r s t  of our  des i red  results. Next, l e t  us 

consider several ac tua l  cases of i n t e n s i t y  matrices la I I e nm 

4 .  EXAMPLES OF INTENSITY MATRICES 

4.1 e Coherent I l luminat ion 

The phase coherence f a c t o r  I'(x - x2) i n  t h i s  case is always 1, regard less  1 
of xl, x2 [2] .  

this i n t e g r a l  i s  separated i n t o  the  product of two i n t e g r d s ,  o r  

Consequently, i f  w e  set  r = 1 i n  Equation (12), w e  f i nd  t h a t  

The products of t h e  complex ampLLtudes at: p o i n t s  nX/.2a, mX/2a i n  t h e  image 

plane are none o ther  than t h e  matrix elements. 

Equation (6) i n  § 3 and it is important i n  t h e  discussion below t o  consider 

t h e  meaning of the matrix i n  terms of these  elements. A conspicuous f ea tu re  

This br ings  us back t o  

/435 of t h e  i n t e n s i t y  matrix i n  t h i s  case is 

eigenvalue which is not  zero i s  (Ea. ). When t h e  minor determinant formed nm 
by the  matrix elements Is zero f o r  some degree lower than r and t h e  minor 

determinants of degrees g rea t e r  than ( r  + 1) are always zero,  the rank of 

t h i s  matrix i s  sa id  t o  be r. It i s  e a s i l y  seen that t h e  second o r  higher  

degree minor determinants with elements given by Equation (13) w i l l  d l  be 

zero. And, therefore ,  t he  formula f o r  f ind ing  t h e  eigenvalues ( c h a r a c t e r i s t i c  

equation) 

that the matrix rank is one,and the - 

N becomes x - (Zanm)xN-' - 0 and only one of t h e  eigenvalues w i l l  no t  be zero. 

This i s  equal  t o  t he  t r a c e  (spur) of t h e  matrix. 
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4.2 e Incoherent I l luminat ion 

The phase coherence f a c t o r  I' i n  t h i s  case is:  
" .  

1 f . t h e s e  conditions are used i n  Equation ( l l ) ,  t h e  element a 

function i n  t h e  case of incoherent i l lumina t ion  can b e  expressed as a s i n g l e  

i n t e g r a l ,  as follows: 

of the i n t e n s i t y  nm 

Here, 

The computation of t h i s  equation is c lose ly  r e l a t e d  t o  t h e  well-known i n t e g r a l  

which gives  t h e  image i n t e n s i t y  I(y) with an incoherent source [br ightness  

I (x) l  . 
t o  t h e  i n t e n s i t y  matrix 

us t o  suspect  needless complexity. 

clusion. 

According t o  the la t te r ,  one i n t e g r a l  would .be enough,while according 

the  number of necessary i n t e g r a l s  increases ,  leading 

We s h a l l  consider t h i s  point  a t  the  con- 

The s implest  case is  t h a t  where t h e  br ightness  d i s t r i b u t i o n  at  the  

object  is uniform: i f  I (x )  = A (cons tan t ) ,  

uan=A f'x(s--$.)w*(r-e) -0 dx 

20 

nsm) I 

- 7 - A  &an (h-1, H-~JS: Ual-O, 
(15) (4) 

(4)Determined by I (y)  from-Equation (14') and (15). 
I(y) . See Appendix 2) .  

Should be cons is ten t  with 

11 



. -  

Another simple and fundamental case is that where the amplitude d i s t r i b u t i o n  

a t  t h e  objec t  plane varies s inusoida l ly  i n  space. 

object  plane is  

The br ightness  a t  the 

.- 

I ( ; )=Acos*wx = -:: A(l+coiZwx) , 

I n  t h i s  case the i n t e n s i t y  m a t r i x  element anm is the i n t e g r a l  

Transforming t h e  independent va r i ab le  t o  %nax/X = 5 and l e t t i n g ,  Xw/2na = p, 

w e  obtain: 

Since t h i s  type of d b f i n i t e  i n t e g r a l  occurs f requent ly  i n  t h e  examples given 

below and many of them are not  found i n  common t a b l e s  of . i n t eg ra l s ,  t he  

method of in t eg ra t ion  and t h e  chief r e s u l t s  are compiled i n  Appendix 3. 

us b r i e f l y  show t h e  r e s u l t s .  

L e t  

When 0 2 p 2 1, or when (0 < w < 2na /X) ,  n # m - -  
e sin (n-m)z(l-#) 

~im*A- A 
cos (n i m)pz 

(n-m)n 

a"*--- A Clt-<l-p) cosZt#pn) n z m  
2 

when p > 1, or o > 2na/X, then anm = 0. 

a c e r t a i n  frequency are cons is ten t  with the  fact  that,when the  image i n t e n s i t y  

d i s t r i b u t i o n  Equation/( F 4') is  t r ea t ed  as a response function, a t r i angu la r  

The results 'which become zero above 

response funct ion occurs 113 and t h e  values higher  than t h e  frequency range 
4.irdX become zero. 

L e t  us consider t h e  rank and eigenvalues .of i n t e n s i t y  'matrices on the  

bas i s  of these r e s u l t s .  When object  br ightness  is uniform, the  i n t e n s i t y  

12 



matrix f o r  Equation. (15) w i l l  c l e a r l y  b e  a diagonal matrix, t h e  diagonal 

elements are not  equal  t o  zero.. O f  the cases where br ightness  varies period- 

i c a l l y ,  i f  w e  take t h e  one where p = 1/2,  o r  w = a /X ,  t he  matrix w i l l  like- 
8 

w i s e  b e  diagonal,  with diagonal elements equal t o  1/2A(X/2a) (1 + 1/2 (-l)n). 

As seen from these  examples, t he  rank of t h e  i n t e n s i t y  matrix i n  coherent 

i l luminat ion w i l l  b e  1, while  t h e  value w i l l  b e  l a r g e r  i n  t h e  case of inco- 

herent  i l luminat ion e /436 - (5) 

4 . 3 .  P a r t i a l l y  Coherent I l luminat ion 

I n  the  one-dimensional problem w e  have j u s t  t r ea t ed ,  t h e  phase coherence 

f a c t o r  i s  given by /- 

i n  accordance wi th  Equation (12). 
l i g h t  source. I f  w e  let  a i n  Equation 

(17) remain equal t o  t h e  numerical aper ture  i n  t h e  system considered so f a r ,  

S = 1 may b e  thought t o  mean t h a t  t h e  s i z e  of t h e  aper ture  when t h e  source 

is  seen from the  objec t  i s . equa1  t o  t h e  numerical aper ture  i n  t h e  system i n  

question. From the  r e s u l t s  given below, one sees t h a t  t h e  conditions where 

S > 1 o r  S 1 are very important. 

S ' i s  a parameter showing the  s i z e  of t h e  

Naturally at  t h e  l i m i t  S + 0, l' = 1. 

Let us f i n d  t h e  elements of the i n t e n s i t y  matrix f o r  an object  image 

wi th  ordinary t r ansmi t t i v i ty .  

and l e t t i n g  E(x) A(x) = K, 

Subs t i tu t ing  I(xl - x2) given by (17) i n  (ll), 

. -.. . .  

c5)When the  s i z e  of t h e  object  i n  question i s  f i n i t e , v a r i a t i o n  i n  t h e  inten- 
s i t y  d i s t r i b u t i o n  o r  t ransmiss iv i ty  of t h e  objec t  plane can b e  expressed as 
a Fourier series and the  r e s u l t s  of § 4 .2  and § 4 . 3  can b e  applied t o  each 
term. 

13 



Here, 5 = .2aaxL/X, r\ = 2aax2/X. The results of this integral. are as fol lows 

(see Appendix 3): 

. - . ._. . - ----___- 

N e x t ,  l e t  us consider t he  case where the  wave amplitude i n  t h e  ob jec t  

plane varies s inusoidal ly .  

i n  Equation (11) and l e t t i n g  E(x) A(x) = K cos wx, 

Subs t i tu t ing  r(xl - 3) as given by Equation (17) 

. ,  

Here, 5 = 2naxl/X, rl = 2aax2/h, p = hw/2aa. 

given i n  t h e  appendix and t h e  r e s u l t s  are shown here.  

The d e t a i l s  of computation are 

... - __ ............ 

a;,- -:- (lis-p) . : j - 

(depending on whether S > 1 o r  S < 1) 

(20-1) 

(20-2) 

(20-3) 

(20-4) 

_(Equation continued on next page) 
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-sin (n-m)px cos:(n + m)p+ n -mtr. 

t __ I (ill) 0 1 ,  (S-l)>p>l ' 

. -  

.-. 'K' sin (n-m)(l-b)a 
Q.r=-' ----- coa (r-m)pt 4s (n-m)a 

(20-4) 

(20-5) 

c.. -K? cos? pgrr (200-5) 

We no t i ce  several i n t e r e s t i n g  poin ts  when looking a t  t h e  case of p a r t i a l l y  

coherent i l luminat ion as described above. F i r s t ,  wi th  incoherent i l luminat ion,  

when p > 1, w > 27ra/X, anm = 0 and no i n t e n s i t y  va r i a t ions  occur bu t  with 

semicoherent i l luminat ion,  they are d i f f i c u l t  t o  d i s t ingu i sh  s ince  p > (1 - S ) ,  

w > (1 C S)27ra/X,and they are e f f e c t i v e  over a g r e a t e r  range than i n  t h e  

preceding case. 

exact ly  the  same form as incoherent i l luminat ion i n  ( i i i ) .  

S < 1, (1 - S) > p > 0 ,  the  r e s u l t s  of (iv) are found t o  revert t o  the  case of 

coherent i l luminat ion at t h e  l i m i t  S -f 0. ,The determination.of t h e  matrix 

rank according t o  t h e  above matrix elements and t h e  eigenvalues is very 

d i f f i c u l t ,  except i n  s p e c i a l  cases. . This f a c t  l i m i t s  the p r a c t i c a l  s i g n i f i -  

cance of treatment through i n t e n s i t y  matrices. However, s ince  t h e  i n t e n s i t y  

matrices themselves have t h e  i n t e r e s t i n g ,  general  p roper t ies  described below, 

they are usefu l  i n  organizing and c l a r i fy ing  t h e  physical  concepts concerning 

o p t i c a l  images 

Secondly, when S < 1, (S, - 1) > p > 1 w e  obtain r e s u l t s  in  

Thirdly,  when 

- 

/437 

Above, w e  dea l t  only with cases where t h e  t ransmiss iv i ty  o r  br ightness  

var ied per iodica l ly  but fo r  images of ob jec ts  with a r b i t r a r i l y  varying t rans-  

m i t t i v i t i e s  o r  br ightnesses ,  t h e  t ransmissivi ty  o r  br ightness  can b e  expressed 

as i n t e g r a l s  of per iodic  components by Fourier i n t e g r a l s  and handled through 

ca lcu la t ions  closely p a r a l l e l i n g  those c i ted .  Thus is i s  not  d i f f i c u l t  

15 



t o  formulate i n t e n s i t y  matrix elements for objec ts  .possessing general  trans- 
miss iv i ty  d i s t r ibu t ions .  

5. GENERAL PROPERTIES OF INTENSITY MATRICES 

The i n t e n s i t y  matrix w a s  introduced through the process of f inding the 

square of t h e  amplitude, using t h e  sampling theorem f o r  transmission system3 

wi th  l imi ted  frequency ranges. 

amplitude i s  a quant i ty  proport ional  t o  electric power, and a formula coin- 

c iding with the i n t e n s i t y  matrix emerges, but  t h i s  problem need not  concern 

us d i r e c t l y  here. This i s  because the coherence of i l luminat ion i n  an o p t i c a l  

system is  a question s p e c i f i c  t o  t h e  o p t i c a l  system, as described i n  5 1. 

I n  electric communications, t he  square of t h e  

I n  order t o  s implify comprehension o f  t he  d i sc i s s ion  which follows, let  

us w r i t e  Equation (7) once more. The i n t e n s i t y  I(y) is 

uL, u2? ..., u ... cons t i t u t e s  one vector  of a multidimensional space, t h e  

total .  o f  Canm um = vn is  anothex vector,and the  i n t e n s i t y  is t h e  scalar pro- 

duct of t h e  two vectors.  

n '  

9 is the vector '  {ul, u2) u , *.  . I  and A is t h e  matrix with elements anm. n 

For the  dimension number (N) of t h e  above multidimensional space r e l a t e d  

t o  t h e  image with which w e  are concerned,we may consider t h e  "degree of 

freedom" of the image. 

of sampling poin ts  expressing t h e  image i n  question. 

image, then N = 4a S/A . 
defined by Toraldo d i  Francia i n  t h e  case of coherent i l luminat ion.  

"he degree of freedom N is  none o ther  than t h e  number 

I f  S is t h e  area of t h e  
2 2  This number N corresponds t o  the  degree of freedom 

However, 

16 



Toraldo adopts another d e f i n i t i o n  i n  the case of incoherent i l luminat ion.  

I n  comparison, our method of  def ining image degree of freedom by the dimen- 

s i o n  number determining i n t e n s i t y  is more cons is ten t  mathematically., 

problems of i l luminat ion coherence are then included i n  t h e  proper t ies  of 

t h e  i n t e n s i t y  matrices. This enables us t o  separa te  t h e  dimension number 

of t h e  space determined by the  numerical aper ture  i n  t h e  o p t i c a l  system from 

the  problem of i l luminat ion coherence. 

All the  

L e t  us f i r s t  discuss  t h e  main poin ts  of t h e  phys ica l  p roper t ies  expressed 

through i n t e n s i t y  matrices. 

i n g  is a real number and it i s  never negative.  

t h e  mathematical p roper t ies  of i n t e n s i t y  matrices are induced. 

The f i r s t  is that t h e  i n t e n s i t y  we are observ- 

From t h i s  bas i c  requirement, 

( i )  I n t e n s i t y  matrices are pos i t i ve  H e r m i t i a m  matrices. 

Hermitian matrices are those whose members s a t i s f y  t h e  r e l a t ionsh ip  

which is e a s i l y  deduced, s e t t i n g  I(y)  and I*(y) equal i n  Equation (7). The 

f a c t  t h a t  they are p o s i t i v e  matrices i s  hue t o  t h e  f a c t ' t h a t  y ,  i n  Equation 

(7) i s  never negative ( 6 ) .  

Hermitian matrices known t o  us through these proper t ies ,  w e  can car ry  out 

f u r t h e r  s tud ies  using i n t e n s i t y  matrices. 

Using t h e  mathematical r e s u l t s  regarding p o s i t i v e  

/- 
Next l e t  us consider t h e  d i r e c t  r e l a t ionsh ips  between t h e  elements of 

i n t e n s i t y  matrices and the  observable phys ica l  quant i t ies .  One of these  is: 

The diagonal. elements of 'an i n t e n s i t y  matrix are equal t o  the  

sampling values of i n t e n s i t y  a t  X/2a in te rva ls ,and  t h e  trace of t h e  i n t e n s i t y  

matrix (sum of diagonal elements) i s  equal t o  t h e  i n t e g r a l  i n t e n s i t y  of t h e  

image. 

(6)The condition t h e r e f o r e  is  t h a t  t he  primary determinants of matrix I I I anm[ I 
are a l l  pds i t ive .  

17 



/- 
The f i r s t  property is found from t h e  f a c t  t h a t  function un(y) included 

i n  Equation (7) is  one at  sampling point y = nX/2a,and zero at  o ther  sampling 

points.  

in tegra ted  over the  e n t i r e  image plane. 

i n  (7) becomes 

The quant i ty  ca l l ed  the i n t e g r a l  i n t e n s i t y  i s  the image i n t e n s i t y  

Using. Equation (5') , the i n t e g r a l  

* 

I l luminat ion coherence i s  included i n  t h e  proper t ies  of t h e  i n t e n s i t y  

matrix, but i t  is  s p e c i f i c a l l y  represented through diagonalization of t h e  

matr ix  by a uni tary transformation. In  representing t h e  i n t e n s i t y  I as the  

s c a l a r  product of vectors as i n  Equation (21), t h e  vectors  with b a s i c  coor- 

dinates  f o r  the representation of (12) are denoted by (13). However, i t  i s  

a rectangular vector with components l i k e  

0, ...), e tc .  
(1, 0, 0, 0, ...), 4, (0, 1, 0, 

!t'he vector 4 given by these  bas i c  vectors can b e  expressed 

as 

'The problem here is t o  use a rectangular transformation of bas i c  coordinates 

t o  change Equation (21) t o  t h e  simplest  form. The new bas ic  vector  s a t i s f y i n g  

1438 such demands is ca l led  the  eigenvector of t he  given i n t e n s i t y  matrix. In  - 
I/ .J2,  .... s a t i s f y  the  following re la t ion-  1, other  words, t h e  eigenvectors I/J 

sh ip  

Xi is a constant, ca l led  t h e  eigenvalue, and it is  e a s i l y  proved t h a t  the  

eigenvalue of a Hermitian matrix i s  a real number. I f  w e  call the  components 

of eigenvector I/.J (S 19 S 2 ,  Sg, ...), the formula f o r  t h e  eigenvalue and the  

eigenvector A$ . .  = XJ, can be wr i t t en  as follows, 
(u11-A) SI .... SI+ ... Sa -t ...... + ... 
U ~ I  SI i ( ~ 2 g - A )  Sz t CII Sa + ..*..* +u:a Sa 0 
..................... 
u;,S,$u.:S*+ ...... , + ( ~ n a - A ) S a = o  

18 
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Since t h i s  system of equations f o r  Sly §2D .,.* has so lu t ions  other  than zero,  

the determinants made up of t he  coe f f i c i en t s  m u s t  b e  zeros The formula is 

ca l led  the eigenformula and, X1,. X2$ I f  

we  f ind  the  so lu t ion  of t he  system equations with the  respective eigenvalues 

* .  are t o  be found as i ts  so lu t ion .  

subs t i tu ted  i n  Equation (26), w e  obtain t h e  eigenvector belonging t o  those 

eigenvalues. Let t ing (Sli, S2i9 S3iy e e .  S ) be t h e  components of eigen- 

vector 3, of eigenvalues'X the  square of t h e  absolute value of t h i s  vector  

is  given by (Jli, qi) and the  vector ,  normalized t o  equal 1, is adopted. 

i t  can be  proved tha t  the eigenvectors a r e  mutually orthogonal [SI. 
norms and orthogonal conditions can be wr i t t en  

n i  
i €'  

And 

Thus the 

Returning t o  t h e  beginning, by transforming t h e  bas i c  coordinate vector  

..., 4 t o  t h e  above eigenvector + +2s e . .  , +n the  vector 
1' 929 . .  n I?. 

from 9 
, -  4 .  = .2(ul9 u2 , , u ) can be expressed by the  new vector  $ = (e,, t,, ., . e , 5,) , n 

or:  

Writing the  vector  components: 

and thus,  i f  t he  matrix with component Sik ' in  row i and column k is shown 

by S, w e  may w r i t e  

The coef f ic ien ts  in Equgtion (28) , or t he  components f o r  t he  new 

coordinate system.of vector Cp can be wr i t ten ,  by v i r t u e  of t he  rectangular  

nature  of eigenvector JIi (27) 
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and using the vec tor  components $is $, i n  t h e  form of 

Ski* i n  Equation (31') is the component i n  row i, column k of t h e  inverse  

transformation matrix, but t h i s  matrix has  conjugate complex numbers f o r  each 

element, with rows and columns transposed i n  matrix S f o r  Equation (29). 
Generally, t h e  t ranspos i t ion  of rows and columns in  a matrix is indica ted  by 

dashes, bu t  w e  are expressing t h e  transformed matrix f o r  Equation (31) by S ' * .  

Thus, 

If w e  consider t h e  square of t h e  absolute  value of vec tor  $s 

However, from Equation (28), 

Because of t h e  rectangular  na ture  of t he  b a s i c  vec tor  $,, we f i n d  (I$,$) = 

C 1 Ek[ , and i n  t h e  coordinate transformation wi th  which w e  are concerned here ,  

we f ind  t h e  square of t he  absolute  value of t h e  vec tor  ( the  norm) t o  be  

invar iab le .  

2 

This can be shown from t h e  rectangular  na ture  of Equation (27) 
using t h e  expression i n  (29). According t o  Equation (31'), and because of 

t h e  i n v a r i a b i l i t y  of t h e  norm, 

can b e  proven. I f  Equations ( 2 7 )  and (34) are expressed through the use of 

u n i t  matrix E ,  

20 
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S*S- SS' = E- (35) 

Generally t h e  transformation s a t i s f y i n g  such a r e l a t ionsh ip  is termed a un i t a ry  

transformation, and t h e  matrix S which s a t i s f i e s  the  r e l a t ionsh ip  i n  Equation 

(35) is ca l l ed  a uni ta ry  matrix. 

i n t e n s i t y ,  are 

4 is expressed 

L e t  us consider t h e  manner i n  which Equations (7) o r  (21), expressing 

transformed by the  above un i t a ry  transformation S. 
by a new b a s i c  vector  1c, 

I f  vector  

as in Equation (28), we obtain i 

Using (25) and t h e  orthogonal Equation (27), w e  r ead i ly  find 

Through (31), s ince  5, is expressed in ' (31 )  o r  (31') 

Showing t h e  ab'ove results i n  matrix form, w e  have 

but through (37), we f ind  t h a t  S'*AS is a matrix where elements o the r  than 

diagonal elements are zero. Le t t ing  D i nd ica t e  t h i s  diagonal  matrix,  

1' x2' Here the  diagonal elements of D are none o ther  than the  eigenvalues X 
..., x . n 

/ An i n t e r e s t i n g  r e s u l t  re'adily induced from (38) by (35) is 
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6 

O r ,  f o r  t he  matrix elements 

The most valuable  of these  results i n  considering the  physical  p rope r t i e s  

of i n t e n s i t y  matrices are Equations (37)  and ( 4 0 ) .  L e t  us consider these  

two f indings . 

'nil ( i i i )  I n  terms of eipepvalue Ai and eigenvector $i(Sli, S2i, ..., 
of a given i n t e n s i t y  matrix A, t he  image i n t e n s i t y  d i s t r i b u t i o n  is he re  /- 

When t h e  i l luminat ion is coherent, a l l  eigenvalues save one are zero and 

Here, we f i n d  t h a t  JA. S is  a quant i ty  corresponding t o  F(kA/2a) i n  
O k  . 

Equation (5). 

i n  (27) b u t  t he  major p a r t  is  played obviously by the  terms belonging t o  t h e  

maximum eigenvalue. 

values is  of more o r  less t h e  same importance. I n  § 4.2, i n  t h e  s p e c i a l  

cases of uniform objec t  br ightness  o r  when t h e  br ightness  varies s inusoida l ly ,  

w e  do n o t  have a uni ta ry  transformation but  an equation i n  t h e  form of ( 3 7 ) .  

When t h e  object  br ightness  is w-iform, a l l  t h e  eigenvalues are equal. 

I n  p a r t i a l l y  coherent i l lumina t ion ,  a number of terms appear 

I n  the  completely incoherent case, each of t h e  eigen- 

As a r e s u l t ,  depending on t h e  values taken by the  eigenvalues, t h e  degree 

of i l luminat ion coherence can b e  estimated f o r  t h e  image formation. 

though i t  may be, w e  should l i k e  t o  consider t he  following quant i t ies .  

Xi as t h e  eigenvalue, s ince  the  sum of a l l  eigenvalues i s  equal t o  the  trace 

of t h e  i n t e n s i t y  matrix and t o  t h e  i n t e g r a l  i n t e n s i t y  Io of t h e  image, t h e  

Formal 
-5 With 
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quant i ty  

with d = 0 i n  t h e  case of coherent i l luminat ion,  while i n  the case of  inco- 

herent i l luminat ion with uniform br ightness ,  d is  maximum. I f  N is the  degree 

of freedom of the  image, 

dp=log N 

However, f o r  N w e  f i n d  i n  t h e  one-dimensional case N = 2&/X w i t h  image 

length L and N = 4a S/X wi th  image area S i n  t h e  two-dimensional case. 

Here, when the image area is very l a rge ,  N increases  indef in i te ly ,but  i f  we  

take d/do, w e  can dea l  with the  upper l i m i t  f o r  N. 
quant i ty  

2 2  

Then, when we take  t h e  

i t  changes from 1 t o  0 as one proceeds from coherent t o  an incoherent uniform 

object  image. 

one measure of coherence. 

This quant i ty  is i n t e r e s t i n g  i n  t h a t  i t  may b e  regarded as 

6 may be  defined as t h e  "degree of coherence". (7) 

Moreover, according t o  von Neuman [ 8 ] ,  -CX l o g  X f o r  matrix A is ' n  n 
given by 

Here, the function log A of t h e  matrix means the  matrix obtained by subs t i t u t -  

ing  matrix A i n  each term of t h e  series expanded logarithm. 

a method o f  evaluat ing 6 without a uni ta ry  transformation of matrix A. 

This furnishes  

(7)In a paper submitted t o  Kagaku [ 9 ] ,  we' discussed 6 f o r  images of ob jec t s  
wi th  uniform transmissivi ty  o r  br ightness  but  according t o  (18'), one cannot 
d i s t inguish  between t h e  semicoherent case when S > 1 and t h e  incoherent case, 
and fu r the r  study is required.  
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Naw, l e t  us summarize t h e  r e s u l t s  obtained from Equation (40): 

( iv)  The a r b i t r a r y  Nth degree p o s i t i v e  Hermitian matrix, and consequently, 

i n t e n s i t y  matrix element a are given by nm, 

from t h e  p o s i t i v e  real number X of N and N orthogonal normal vec tors  $i i 

The number of var iab les  designat ing an i n t e n s i t y  matrix is determined by 

i j  
the  above N eigenvalues and N eigenvectors.  Since the vector  component S 
is generally complex, i t  may be thought of as Sij = rij exp (eij). Here, 

r. .  , 8.. are real numbers. The number o f ,  var iab les  designating these  vec tor  

components is 2N e Consequently, t he  number of var iab les  determining a N 

degree i n t e n s i t y  matrix i s  (2N - 1 ) N .  

2 t h  1 J  1 3  

However, t he re  is a condi t ional  Equation (27) f o r  N vectors  t o  b e  

p o s i t i v e  orthogonal vectors .  These condi t iona l  equation numbers are 

N - 3/2N(N - 1) =: 1/2N(N + l), and thus: 

(v) The number R of independent var iab les  t o  designate any a r b i t r a r y  

Nth degree i n t e n s i t y  matrix is: 

R-N(PN+l )  - i N ( N i - l )  - f (3N+l )  I (44) 

However, t h e  s implest  case of  an i n t e n s i t y  matrix is . that  of coherent illumi- 
nat ion.  This i s  because a l l  eigenvalues b u t  one h may be zero. I n  t h i s  

case, only one vector  i s  needed t o  give t h e  matrix elements,and the  number 

R( coherent) of independent var iab les  i s  

0 

R (coherent) -2N (45) 

These numbers of independent var iab les  are fundamental q u a l i t i e s  r e l a t i n g  t o  

e n t i r e  i n t e n s i t y  matrices determined by i l luminat ion coherence. However, we 
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w i l l  show that a l l  of these independent va r i ab le s  do-not have any s ign i f i cance  

wi th  respect  t o . a c t u a l  i n t e n s i t y  matrices. 

i t s e l f  is determined by 2N sampling values ( the  number of sampling values f o r  

an amplitude with coherent i l luminat ion is  N). 
sampling values may take on any a r b i t r a r y  values at  a l l ,  t h e  s i t u a t i o n  would 

b e  simple. 

t r i bu t ion  i n  t h e  form of Equation (7) which can be formed from t h e  above 

i n t e n s i t y  matrices. This means t h e  introduct ion of a cor re la t ion  between the  

2 N  sampling values. Consequently, the above i n t e n s i t y  matrix proper t ies  are 

Rather, i n t e n s i t y  d i s t r i b u t i o n  

I f  w e  say t h a t  these 2N 

I n  a c t u a l i t y  they m u s t  b e  sampling values of t h e  i n t e n s i t y  dis-  

indispensable i n  inducing t h e  amount of’ information concerning i n t e n s i t y  

d i s t r ibu t ion .  Actual treatment w i l l  be reserved f o r  discussion a t  a later 

opportunity . 

(vi) I n t e n s i t y  d i s t r i b u t i o n  I (y)  !Equation (7)J i s  determined by t h e  

sampling values at i n t e r v a l s  X/4a of i n t e n s i t y  d i s t r i b u t i o n ,  regardless  of 

i l lumina t ion  coherence, and sample values and i n t e n s i t y  matrices are re l a t ed  

i n  t h e  following manner: 

Here, 

k-2P: ~.(2pif-!o)-O, p+n 

Ma (2PJf4a) 1, fi  = n 

h-2P + 1: u,((Zp+l)!/.Io) . 
Y - (-W-n/{2(p-n)-+1~ 

To prove t h i s ,  one f inds  t h e  Fourier transformation of t h e  i n t e n s i t y  

I(y) f o r  (7) i n  § 5 .  

un(y) um(y) has twice t h e  range of t he  Fourier  transformation of un(y) alone, 

as follows, outs ide of which i t  is  zero. The following i n t e g r a l  is  found by 

the  method shown i n  t h e  appendix 

The Fourier  transformation of t h e  r ight-s ide i n t e g r a l  

i 
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Thus, w e  f i n d  t h a t  t h e  range of I(w) i s  l imi ted  t o  Sa/X,-and by using the  

Fourier  series transformation i n  accordance with t h e  sampling theorem i n  

§ 2, w e  can der ive Equation (46). 

Rewriting f o r  t h e  sampling values i n  ( 4 6 ) ,  ant l e t t i n g  Bk designate t h e  

kth sampling value,  

And the  relat ionship '  

holds f o r  t h e  i n t e g r a l  i n t e n s i t y  Io f o r  t h e  e n t i r e  image, from Equation (23). 

6. CONCLUSION 

These results supplemented a speech a t  t h e  Apr i l  6,  1956 Applied Physics 
/ J o i n t  Lecture Meeting ,symposium on "Contributions of Information Theory t o  

Physics" [SI. The phys ica l  s ign i f icance  of " in t ens i ty  matrices" presented 

above was explained. 

appl icat ions of i n f o m a t i o n  theory,  and i f  i t  is  t o  be  used f o r  ac tua l  calcu- 

This work is  mote i n  the  na tu re  of a "prelude" t o  

l a t i o n  of amounts of information, i n t e n s i t y  matrices must be expanded t o  

26 
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__ . ._ - - - - ___ - 
cover two-dimensional. cases. There remains t h e  fundamental problem' of- changes 

i n  i n t e n s i t y  matrices due t o  t h e  phase d i f f e r e n t i a l  method and t h e  problem of 

i n t e n s i t y  matrices i n  t h e  case of o p t i c a l  systems containing aberrat ions.  W e  

in tend t o  r epor t  on t y s d o t h e r  t i m e .  

Moreover, t he  discussion above d e a l t  with f i n i t e  dimensions, and f o r  

completeness needs t o  take up i n f i n i t e  dimensions. For t h i s ,  one m u s t  apply 

Hilber t  spaces,  but  t h a t  was  beyond t h e  scope of t h i s  sho r t  paper. 

I should l i k e  t o  thank Professor  H. Takahashi of Tokyo Universi ty 's  

Department of Physics and Ass is tan t  Professor  K. Miyake of Tokyo Universi ty  

of Education f o r  t h e i r  consul ta t ion i n  compiling t h i s  paper and Professor  H. 

Kubota of Tokyo Universi ty 's  Production Technology I n s t i t u t e  f o r  providing 

reference materials on t h e  appl ica t ions  of information theory t o  opt ics .  
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Note in Revision 

It has  come t o  our  a t t e n t i o n  that De Gabor.in England h i ependen t ly  

describes t h e  general  appl ica t ion  of  Hermitian matrices t o  images. 
t i o n  Theory, Third London Symposium, ed i t ed  by Colin Cherry (1956, Butter-  

worths S c i e n t i f i c  Publ icat ions)  Vole 4. Optical  Transmission by D. Gabor, 

pp. 26-33. 

Informa- 

H i s  method of der iva t ion  i s  d i f f e r e n t  from t h a t  used In t h i s  paper, but 

t h e  content i s  e s s e n t i a l l y  the  same and i t  is recommended that i t  b e  read i n  

conjunction with t h i s .  In  t h i s  paper, t he  author s t a t e d  t h a t  matrix manipu- 

l a t i o n  f o r  i n t e n s i t y  matrices i n  general  cases w a s  r a t h e r  d i f f i c u l b b u t  later 

came t o  t h e  conclusion t h a t  i n t e n s i t y  matrices could b e  manipulated i n  t h e  

case of  d i f f e r e n t  ob jec ts  or systems wi th  aber ra t idns  through matrix trans- 

formation. 

at Tokyo University on October 3 and t h e  d e t a i l s  are t o  be published. 

discussions wi th  Gabor took place,but the concepts are very similar. 

This w a s  presented a t  a l e c t u r e  meeting of t h e  Physics Department 

No 

4 
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Appendix 1 

Proof f o r .  Equation‘ (8) 

Let t ing  E(x) be t h e  complex t ransmiss iv i ty  of t h e  .object,  A(%-z) , t h e  

complex amplitude of t h e  inc ident  waveb according t o  Equation (1) 

Fourier transformation of E(x)A(x-z) i s  

t h e  

Also, from Equation (4) t he  amplitude d i s t r i b u t i o n  F(y) i n  the  image plane 

is  

Subs t i tu t ing  (1) i n  (2) and changing the i n t e g r a t h n  sequence, 

- .- 
# A  ---- MA: 

And i f  w e  next  i n s e r t  F(-$ 9, F( 

w e  obtain Equation (8) e 

s 4 for poin ts  Y= 2 r s  ‘2r i n  Equation (7), - 
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Appendix 2 

(1) Incoherent case 
- .  

Subs t i tu t ing  t h e  i n t e n s i t y  matrix given by (15) i n  (7), 

Also, from (14') 

+- sin' (i-Ur)--- 
Comparing both of these, w e  f i n d  t h a t  general ly  mg.- -(P-z',j< -11 must be t rue.  

This r e l a t ionsh ip  can also be derived from t h e  series expansion of I / ( s i n  2 n) (8) 

Similar ly ,  when t h e  objec t  br ightness  v a r i e s  per iodica l ly ,  i f  we s u b s t i t u t e  

(16) i n  (7),  

Also, f inding ICE) from Equation (14') 

Se t t ing  these equal t o  each b the r ,  we ob ta in  a s i n g l e  equal i ty .  

- ____ __ 
(8).For example, Formeln und S2itze fur '  d i e  spez ie l l en  -Functionen de r  

mathematischen Physik;(Formulas and Theorems fo r  Spec ia l  Functions of Mathemat- 

ical Physics) (Springer 1948) p. 215. .. ' 

i 
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(2) Partially Coherent Illumination. 

A s  to  the image intens y distribution for the case where object trans- 

i n  (7) according t o  (18') and (18"), 
2 

missivity is constantj<ubstituting a nm 

I-Ic1 xcz= !sinS(n-m)a ~ j q ( p ~ n r ) . s i n ( g - m a )  
,,I S(n-q~)n 0 - m  p-mn 

Also, for the equation corresponding to (14') when illumination is  incoherent, 

w e  find 
_- 

IQ) = ~ ~ f ( x ~ - ~ ~ ) ~ ( = l ) ~ ( ~ : ) ~ ( = l ) ~ * ( r * )  
' x u(xI-~)Y*(x*-y~dx,dxI 

but, lett ing E(x)A(x) = K and substituting u(x - y) from ( 8 ' )  and r(xl - x2) 

f.rom (17), w e  find, similar to  the integral i n  (18), 

Thus, w e  derive 
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Appendix 3 

" 1  - a,- 
,%E . . .  . . .  

$e Lett ing t h e  va r i ab le  equal  --i- =I 

Since the in t eg ra t ed  funct ion can b e  expressed as 

t h e  o r i g i n a l  i n t e g r a l  i s  the  sum o r  d i f fe rence  of t h e  following fou r  i n t e g r a l  

forms 

To f i n d  this  i n t e g r a l ,  one must select a method of i n t eg ra t ion  such t h a t  

exp(iax) vanishes,  a t  i n f i n i t y ,  and adopt Cauchy's p r inc ipa l  value,  i n  t h e  

case where the  i n t e g r a l  has  an extremity on t h e  real axis. 
kind of res idue along the  real axis by %,we must no te  the  contributi 'on of 

' S R t  t o  t h e  value of t h e  complex i n t e g r a l .  However, R is the  residue 

of t h e  extremity in s ide  t h e  in t eg ra t ion  path. (Whittaker: Modem Analysis, 

page 117,  1935). 

obtained by t h i s  means. 

Designating t h i s  

The o r ig ina l ly  described r e s u l t s  of i n t eg ra t ion  were 

(2) That which is included i n  t h e  i n t e g r a l  i n  (16) 
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A s  above 

functions. 

to  each, or 

this is separated into ~ coGlex integrals containing designated 

The results are immediately reached by applying the above formula 

p>l I.,-0 i 

. ,  QSPS]. n*m 

(3) Integral included i n  (18) 

(4) Definite integral required for calculation of (18) 

( i )  S*I, p>(I+s); I s 0  
( i i )  S>I (I~s)>~>(s-I), B.~.P,'s<I 

(1 - S)7P> (1 -S) 
x sin CS(Q - SK) +pun) +sin co - fir -pp? 

2s Q-nr 
I -  

(iii) S>l (S-l)>p>O: 

(19) is reduced to a s ingle  integral using the results above, i . e . :  

. .  
. .  
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. I  

dr 
. sin(g-mn) 

- b  - 'Q-WIK 

Of these i n t e g r a l s  ( i i i )  and ( iv)  are readi ly  found from Formulas (2) and 

I n  i n t e g r a l s  (b) and (c) ,  the  above formulas can be used,but new calculat ions 

are necessary f o r  (a) and (d). 

The values of these four  d e f i n i t e  i n t eg ra l s  a r e  then: 

/ 4 4 3  

t n - m l r  - __ 
I ,. 

= m - xp cos 2npn ' continued 
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